# Cases on 10x Visium Data Here we provide case applications based on 10x Visium data (which are not at single-cell resolution). For convenience, we used the `Quick Mode` here, but you can also follow the {doc}`Step by Step ` Guide to analyze 10x Visium data—the steps are the same. A frequently asked question is how to provide annotations for 10x Visium data. Note that gsMap can run without annotations. The most convenient approaches are to either leave the `annotation` parameter unset (in {doc}`Step by Step `) or provide annotations from spatial clustering methods, such as [SpaGCN](https://github.com/jianhuupenn/SpaGCN). ## Preparation Make sure you have {doc}`installed ` the `gsMap` package before proceeding. ### 1. Download Dependencies The `gsMap` package in quick mode requires the following resources: - **Gene transfer format (GTF) file**, for gene coordinates on the genome. - **LD reference panel**, in quick mode, we provide a pre-built LD score snp-by-gene matrix based on 1000G_EUR_Phase3. - **SNP weight file**, to adjust correlations between SNP-trait association statistics. - **Homologous gene transformations file** (optional), to map genes between species. To download all the required files: ```bash wget https://yanglab.westlake.edu.cn/data/gsMap/gsMap_resource.tar.gz tar -xvzf gsMap_resource.tar.gz ``` Directory structure: ```bash tree -L 2 gsMap_resource ├── genome_annotation │   ├── enhancer │   └── gtf ├── homologs │   ├── macaque_human_homologs.txt │   └── mouse_human_homologs.txt ├── LD_Reference_Panel │   └── 1000G_EUR_Phase3_plink ├── LDSC_resource │   ├── hapmap3_snps │   └── weights_hm3_no_hla └── quick_mode ├── baseline ├── SNP_gene_pair └── snp_gene_weight_matrix.h5ad ``` ### 2. Download Example Data You can download the example 10x Visium data as follows: ```bash wget https://yanglab.westlake.edu.cn/data/gsMap/Visium_example_data.tar.gz tar -xvzf Visium_example_data.tar.gz ``` Directory structure: ```bash tree -L 2 Visium_example_data/ ├── GWAS │   ├── IQ_NG_2018.sumstats.gz │   └── Serum_creatinine.sumstats.gz └── ST ├── V1_Adult_Mouse_Brain_Coronal_Section.h5ad ├── V1_Mouse_Brain_Sagittal_Posterior_Section.h5ad └── V1_Mouse_Kidney.h5ad ``` ## Case1 Data: Visium data of adult mouse coronal section Trait: IQ Required memory: 11G (2902 cells) ```bash gsmap quick_mode \ --workdir './example_quick_mode/Visium' \ --homolog_file 'gsMap_resource/homologs/mouse_human_homologs.txt' \ --sample_name 'V1_Adult_Mouse_Brain_Coronal_Section' \ --gsMap_resource_dir 'gsMap_resource' \ --hdf5_path 'Visium_example_data/ST/V1_Adult_Mouse_Brain_Coronal_Section.h5ad' \ --annotation 'domain' \ --data_layer 'count' \ --sumstats_file 'Visium_example_data/GWAS/IQ_NG_2018.sumstats.gz' \ --trait_name 'IQ' ``` [gsMap report](https://yanglab.westlake.edu.cn/data/gsMap/Visium_report/coronal/V1_Adult_Mouse_Brain_Coronal_Section_IQ_gsMap_Report.html) for the `IQ` on the adult mouse coronal section Visium data. ## Case2 Data: Visium data of adult mouse sigital section Trait: IQ Required memory: 12G (3289 cells) ```bash gsmap quick_mode \ --workdir './example_quick_mode/Visium' \ --homolog_file 'gsMap_resource/homologs/mouse_human_homologs.txt' \ --sample_name 'V1_Mouse_Brain_Sagittal_Posterior_Section' \ --gsMap_resource_dir 'gsMap_resource' \ --hdf5_path 'Visium_example_data/ST/V1_Mouse_Brain_Sagittal_Posterior_Section.h5ad' \ --annotation 'domain' \ --data_layer 'count' \ --sumstats_file 'Visium_example_data/GWAS/IQ_NG_2018.sumstats.gz' \ --trait_name 'IQ' ``` [gsMap report](https://yanglab.westlake.edu.cn/data/gsMap/Visium_report/saggital/V1_Mouse_Brain_Sagittal_Posterior_Section_IQ_gsMap_Report.html) for the `IQ` on the adult mouse sigital section Visium data. ## Case3 Data: Visium data of adult mouse kindey Trait: Serum creatinine Required memory: 8G (1437 cells) ```bash gsmap quick_mode \ --workdir './example_quick_mode/Visium' \ --homolog_file 'gsMap_resource/homologs/mouse_human_homologs.txt' \ --sample_name 'V1_Mouse_Kidney' \ --gsMap_resource_dir 'gsMap_resource' \ --hdf5_path 'Visium_example_data/ST/V1_Mouse_Kidney.h5ad' \ --annotation 'domain' \ --data_layer 'count' \ --sumstats_file 'Visium_example_data/GWAS/Serum_creatinine.sumstats.gz' \ --trait_name 'Serum_creatinine' ``` [gsMap report](https://yanglab.westlake.edu.cn/data/gsMap/Visium/V1_Mouse_Kidney_Serum_creatinine_gsMap_Report.html) for the `Serum creatinine` on the adult mouse kindey Visium data.